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Utilisation de points-clés 3D SIFT-Rank avec des neuro-images

Étienne PEPIN

RÉSUMÉ

Ce mémoire examine plusieurs utilisations des masques de segmentation en conjonction avec
l’analyse par point-clé dans le contexte de l’imagerie médicale. Actuellement, la procédure la
plus populaire pour les neuro-images est l’extraction de points-clés sur une image sans tissu
provenant de l’extérieur du cerveau. Notre hypothèse initiale est que cette technique génère du
bruit près de la bordure du cerveau et nuit aux études cliniques. Nous proposons une nouvelle
méthode basée sur l’extraction de points-clés sur l’image naturelle avant le filtrage par masque.
Nous avons reproduit une étude récente par Chauvin, Kumar, Wachinger, Vangel, de Guise,
Desrosiers, Wells & Toews (2020) sur la classification des relations familiales utilisant la base
de données Human Connectome Project et comparé la méthode classique avec notre nouvelle
méthode. Celle-ci dépasse par 2% la méthode classique dans les tests de classification familiale.
Les résultats ont été publiés dans l’atelier MLCN (Pepin, Carluer, Chauvin, Toews & Harmouche,
2020). Nous avons développé un modèle théorique expliquant et prédisant ces comportements
en se basant sur les propriétés de la loi normale multidimensionnelle. Notre méthodologie est
générale et nous nous attendons à ce que nos résultats soient généralisables pour d’autres types
de données et de systèmes de classifications basés sur la convolution linéaire, les réseaux de
neurones convolutifs par exemple.

Mots-clés: skull-strip, extraction de cerveau, points-clés, neuro-image, filtre de Gauss





Keypoint Masking for Analyzing Segmented Medical Image Data

Étienne PEPIN

ABSTRACT

This thesis investigates different methods of using segmentation masks, in the context of keypoint
analysis of medical images and specifically the human brain in magnetic resonance images
(MRI). Recent studies have used keypoints extracted following skull-stripping, i.e. first removing
all non-brain image content. However we hypothesized that skull-stripping prior to convolution
filtering (e.g. Gaussian derivative filtering used in 3D SIFT-Rank keypoint extraction) will
lead to random boundary effects that will hinder brain analysis. To test this hypothesis, we
compare against keypoints extracted from natural images prior to skull-stripping. Our experiment
replicates a recent large-scale neuroimage family indexing experiment on data from Human
Connectome Project, where classification results improve on average 2% for keypoints extracted
from natural data vs. skull-stripped data. We develop a theoretical model explaining and
predicting experimental results based on the properties of a n-dimensional normal distribution.
Our methodology is general, and we expect our results to generalize to other non-brain data,
e.g. natural image regions and other classification systems based on linear convolution, e.g.
convolutional neural networks.

Keywords: skull-strip, brain extraction, keypoint, neuroimage, Gaussian filter
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INTRODUCTION

Neuroimages studies often apply brain masking (as seen in figure 0.1 (b)) to remove non-brain

content prior to analysis (Smith (2002)). Masking algorithms may introduce random variations

and noise into the image, due to the imprecision in identifying the boundary of the brain, and

these may adversely affect subsequent image analysis algorithms involving convolution filtering.

For example, keypoint-based analysis via the 3D SIFT-Rank algorithm (Toews, Wells III,

Collins & Arbel (2010)) where salient keypoints are extracted based on the strong reaction of

the Laplacian filter to sharp image borders. Does border noise due to image masking negatively

impact keypoint analysis? If so, can masking be used in an alternative fashion to reduce the

impact of noise linked to masking?

(a) Natural Image (b) Masked Image

Figure 0.1 Keypoints (circle) extracted in original and skull-stripped images. Note how
different they are.

The main contribution of this thesis is: a procedure detailing the best practice for keypoint

extraction for the purpose of medcial image analysis. It states that keypoints should always be

extracted from natural image data prior to masking. Our novel masking process then allows

to remove any keypoint inside a mask containing too much non-mask content according to the

project’s needs. We also make suggestions for using masked images while reducing noise.
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Our masking process removes keypoint closer then a specified distance to the border mask. We

tested it in a replication of the HCP family relationship classification experiment by Chauvin

et al. (2020) and showed improved classification from 86.5% to 88.9% for the full-siblings (FS)

class and from 90.9% to 92.6% for the dizygotic twins (DZ) class compared to the original

procedure using intensity-masked keypoints.

The primary hypothesis of this thesis is that, because image masking procedures such as

skull-stripping may introduce noisy information, region-based masking should be performed

after feature extraction rather than before, as is the common practice. The novel method we

developed to investigate this hypothesis results from developing a theoretical model detailing

neighborhood data contribution to keypoint encoded information. Our model quantifies the

amount of information from outside the mask encoded in a keypoint as a function of its distance

to the mask’s border. This enables us to discard uninformative keypoints by removing them

depending on their distance to the mask’s border. We developed our model by analyzing

mathematically how keypoints are extracted. Keypoint data is extracted from the image with

Gaussian filters and the data encoded can be analyzed mathematically based on those filters.

Knowing the original location of encoded data allows us to estimate the amount of information

within the keypoint coming from background regions, based on a model of Gaussian diffusion,

and reject keypoints near the mask boundary. For example, keypoints extracted from intensity-

masked images situated on the mask’s border will attribute around 50% of their content to blank

artificial content.

We confirmed our model by comparing a of family members using classification test on keypoints

extracted from natural images and skull-stripped images. Many masks using various distances

from the original border were tested on both types of keypoints. At no distance from the

brain mask’s border, we get the result we shared above, around a 2% increase in classification

performance. At a distance equal to the diameter of a keypoint, results are the same for natural
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and skull-stripped images. Since our model told us that at that distance, 94% of the data

originated from inside the brain mask, it makes sense that results are the same for skull-stripped

and natural images. At a distance of half the keypoint diameter, results are mostly better for

natural images, but less markedly. Interestingly, results were better with skull-stripped images at

that distance than when not removing any keypoints.

We performed the above mentioned experiment on images with an isotropic resolution of 0.75mm

and 1.25mm. The results we discussed above are for the 0.75mm resolution images. They offer

the overall better classification rates. But at a 1.25mm resolution, the advantage of natural

images is clearer than at 0.75mm. The uninformative keypoints generated from a skull-stripped

image are situated near the border of the brain mask. The better the resolution, the smaller

the brain mask’s border is compared to the brain volume. This suggests that our procedure is

particularly needed when working with brain images at lower resolutions.

We also generate a visualization of keypoints extracted from skull-stripped images matching

to keypoints extracted from natural images. The visualization enables us to observe how

intensity-masked keypoints are affected near the border of the skull-stripping mask.

In parallel, we analyze how feature scale influences signature matching between twins. We

also provide a novel keypoint segmentation algorithm (annex III), based on the Kernel Density

Algorithm, which classifies keypoints invidually. This segmentation experiment is a totally

different inquiry. We interrupted since it did not seem to produce interesting results.





CHAPTER 1

BACKGROUND AND FUNDAMENTALS

This chapter details most of the technical knowledge necessary to understand our work, including

general computer vision knowledge, mathematical notions, specifics on used technologies and

pertinent literature review. This thesis makes use of medical imaging and machine learning

technologies. We describe this here focusing specifically on filtering techniques, including the

Gaussian filter. We present the 3D SIFT-Rank algorithm, explain in detail our initial hypothesis

about border interference and introduce the HCP family relationship classification experiment

we use to grade our method.

1.1 Medical Imaging

Medical imaging is the representation of the interior of the body. In our case we will analyze

neuroimages, which are representations of the brain. Neurostudies can be based on different

modalities, depending on the available technology and needs of the study. Magnetic Resonance

Imaging (MRI) is the most common modality in brain studies. It uses the magnetization

properties of atomic nuclei to produce volumetric images. The 2 most common procedures for

MRI scans are named T1 and T2 weighted MRI. The different parameters used result in different

intensities in the resulting image for the same tissues. Another modality used for neurostudies

is the Computed Tomography (CT). It uses X-rays emitted from many angles to generate a

volumetric image, by measuring the amount blocked by body tissues. Since it is based on X-rays,

the amount of radiation received by the patient must be controlled, which limits the frequency of

exposure. We will work with MRI T1-Weighted images, mainly because of it’s prevalence in the

field. But much of our conclusions could be applied to different modalities.
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1.2 Computer Vision Fundamentals

This section contains fundamental notions of computer vision knowledge, essential to understand

some aspects of our research. Information present in this section can be found mostly

in Gonzalez & Woods (2006) and is commonly seen in computer vision classes.

1.2.1 Digital Images

Digital images are images represented with picture elements, named pixels in 2 dimensions and

voxels in 3 dimensions. Each picture element contains a discrete quantity called intensity. We

will represent images in our work with this mathematical model:

� (p) = 8 | p ∈ Ω� (1.1)

N3 −→ R1 (1.2)

Ω� = {p = [G, H, I] | p ∈ N3, G < �, H < �, I < �} (1.3)

Where � is an image of size (�, �, �) and Ω� is the image space.

1.2.1.1 Distance Between Two Points

It is often useful to calculate the distance between 2 points in an image. Many techniques can be

used to calculate distances in an image, but we will be using the Euclidean distance to calculate

distances between 2 points ? = (?1, ?2, ?3) and @ = (@1, @2, @3):

3 (?, @) =
√∑

8

(@8 − ?8)2 (1.4)
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Sometime a point ? may be represented as a vector p, in which case the norm of the vector is

the distance from the origin to ?

| |p| | =
√∑

8

?2
8
=
√
p · p (1.5)

Where "·" is the dot product. The Euclidean distance between 2 vectors ? and @ is:

| |q − p| | =
√
| |q| |2 + ||p| |2 − 2p · q (1.6)

1.2.1.2 Erosion Operation

The erosion is part of morphological operations. It is used on binary images to reduce the size

of regions or eliminate very small regions. The erosion of set � by set � is defined by:

� 	 � = {p ∈ Ω� |�I ⊆ �} (1.7)

where �I is defined by:

�I = {p + b|b ∈ �} (1.8)

Where � ∈ Z3 and � ∈ Ω� . � is called a structuring element. Typically, the structuring element

is isotropic and some of the common shapes are a sphere, cube and diamond. The sphere has

the advantage of having the same distance in any direction, but since structuring elements are

usually small, the sphere shape can be a rough pixelated approximation.

1.2.2 Spatially Local Filtering

The content of most human-interpretable images can be described as a collage of localized

regions containing pixels of the same object, scene or texture. A fundamental operation in

computer vision is thus to characterize the image content within spatially localized image

regions.
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Spatially local filtering can be viewed producing a result image ' : R3 → R, where the value

of '(G, H, I) at each voxel (G, H, I) is a function of the voxel values in the original image �

at neighborhood #(G,H,I) = {(G8, H8, I8) : ‖G8 − G, H8 − H, I8 − I‖ ≤ )ℎA4B}, where )ℎA4B is a

proximity threshold.

'(G, H, I) = 5 (�, #(G,H,I)). (1.9)

In the case of a linear filter, e.g. convolution, it modifies each voxel of an Image � with a linear

function of neighbouring voxels, involving voxel-wise multiplication and addition.

1.2.2.1 Gaussian Filter

The Gaussian filter is commonly used in computer vision applications to reduce image noise. It

can be seen as a local average with more weight given to the closest neighbours. The filter is

defined in n-Dimensions as

� (x : f2) = 1
(
√

2cf)=
4
− | |x | |

2

2f2 (1.10)

Where = ∈ N, f2 ∈ R > 0 is the variance and x ∈ Ω� .

It is seen in probability as the multivariate Normal distribution. The random variable X =

[-1, -2, ..., -=] is said to follow a multivariate distribution, noted as X ∼ N(`, Σ) if x follows

the probability density function (PDF):

5 (x : `, Σ) = 1√
|Σ | (2c):

exp (−1
2
(x − `)TΣ−1(x − `)) (1.11)

Where ` ∈ R= is the mean, Σ is a square covariance matrix and |Σ | is the determinant of the

covariance matrix. The Gaussian filter is an isotropic filter, which reduces the covariance matrix
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to a matrix with value f2 on the diagonal. It also has an average of ` = 0, which removes the

term.

The Gaussian filter is a core component of the 3D SIFT-Rank keypoints, which will be discussed

later.

1.2.2.2 Laplacian Filter

A Laplacian filter is a spatial filter of the second order derivative often used to detect or highlight

sudden change in intensity. Sharpening filters often make use of a Laplacian filter. The second

order derivative is the rate of change of a function. Let’s say 5 (G, H) represents any point

(G, H) ∈ R2 in an image I. Then

m 5

mG
= 5 (G + 1) − 5 (G) (1.12)

represents the change of the image I in the direction x. Since x is a discrete variable, the

derivative can be calculated by comparing a pixel to its neighbour’s value along the G axis.

m2 5

mG2 = [ 5 (G + 1) − 5 (G)] − [ 5 (G) − 5 (G − 1)] = 5 (G + 1) + 5 (G − 1) − 2 5 (G) (1.13)

The second order derivative is calculated by subtracting a pixel’s first order derivative to its

neighbours along the G axis.

The suggested filter above is anisotropic since it has different properties depending on the

direction. Such properties can be desired to detect the rate of change in a particular direction,

but most often an isotropic filter is used. The equation below and figure 1.1 are an example of

an isotropic Laplacian filter.
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∇2 5 =
m2 5

mG2 +
m2 5

mH2 = 5 (G + 1, H) + 5 (G − 1, H) + 5 (G, H + 1) + 5 (G, H − 1) − 4 5 (G, H) (1.14)

Figure 1.1 Laplacian Filter

And here is the equation for the 3D filter:

∇2 5 =
m2 5

mG2 +
m2 5

mH2 +
m2 5

mI2
(1.15)

= 5 (G + 1, H, I) + 5 (G − 1, H, I) + 5 (G, H + 1, I) + 5 (G, H − 1, I) (1.16)

+ 5 (G, H, I + 1) + 5 (G, H, I − 1) − 6 5 (G, H, I) (1.17)

1.2.3 Skull-stripping

Skull-stripping, sometimes called brain extraction, is a standard preprocessing step in most

image-based neurostudies. For instance the Brain Extraction Tool (BET) (Smith, 2002) has been

widely used since 2002. Volumetric images generated for neurostudies are imprecise, they often

include the skull as well as other body parts above the shoulders. To strictly limit the data used

in those studies to brain tissues, non-brain tissues in the image are masked, a process called

skull-stripping. This is an active area of medical imaging research because of its vital role in any

image-based neurostudy. Skull-stripping procedure are often compared together with a metric

called the Dice Coefficient.
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(a) Original Image (b) Skull-stripped Image

Figure 1.2 Original and skull-stripped images

The Dice Coefficient is one of the most common metric of performance of skull-stripping. It’s a

measure of how much a set matches another. In our case, how much the computed brain’s mask

overlaps with the real brain, ranging from 0 to 1 when it matches perfectly.

�� =
2|� ∩ � |
|�| + |� | (1.18)

Where |�| is the cardinality (size) of set � and |� ∩ � | is the intersection of set � and �. A

weakness of the DC is that bigger objects tend to obtain better DC, since the area near the border

represents a smaller percentage of the whole organ.

The different skull-stripping techniques available are well documented by Palanisamy & Prasath

(2015). They can be categorized into five categories: mathematical morphology-based methods,

intensity-based methods, deformable surface-based methods, atlas-based methods and hybrid

methods as stated in Palanisamy & Prasath (2015). These different techniques have been

compared by Iglesias, Liu, Thompson & Tu (2011) and often obtain a Dice Coefficient above

90%.
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Performances of skull-stripping depends on many factors, including the skull-stripping algorithm,

the characteristics of the imaging apparatus, the imaging modality and the patient morphology.

Many open-source software are available for performing those algorithms. The data we used for

our experiments was skull-stripped with FreeSurfer (Fischl, 2012), which obtained an average

DC of 93.9% on the OASIS dataset(Iglesias et al. (2011)).

1.3 Salient Keypoints

Salient keypoints are representations an image as a list of distinctive local features from that

image. Those features typically aim to be invariant to scale and rotation variations. This

approach offers many benefits. The features provide robust matching over a variety of affine

transformations and resulting image representations are more compact, taking less memory.

This enables the use of nearest neighbour strategies for matching over large databases.

One of the most popular salient keypoint algorithm is SIFT (scale-invariant feature transform),

which was published by Lowe (2004). At the time, the technique was well positioned for object

recognition compared to other available algorithms. Since then, other algorithms have been

developed to generate keypoints and deep learning algorithms are often preferred over keypoints

matching for object recognition.

We will be using the 3D SIFT-Rank keypoint method (Toews et al., 2010) in our work, which

is based on the SIFT algorithm but expanded to work with 3D images. As described in the

above mentioned article: "The goal of invariant feature extraction is to identify and characterize

informative image patterns in a manner independent of global variations in image geometry and

appearance, e.g. due to misalignment or intensity changes". An overview of the algorithm is

provided below and shown in figure 1.3.

1.3.1 3D SIFT-Rank: Keypoint Extraction

Let 58 = {68, 08} represents a feature of an image represented as keypoints � = { 51, 52, ..., 5=}.

6 = {-, f,Θ} ∈ R7 represents a 3D SIFT-Rank keypoint’s geometry and 0 ∈ R64 is it’s
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Figure 1.3 3D SIFT-Rank extraction process. Step a) is the sub-sampling of the image
using Gaussian filters of different scales. Step b), Saliency operator, computes the

Difference of Gaussian (DoG) of images of different scales f8. Step c), Saliency maxima,
detects local maximum. Step d), Scale-normalized gradient, computes the value of the

keypoint.

descriptor encoding local intensities. Let - = [G, H, I] | - ∈ Ω� represent the spatial location of

the centre of the keypoint, f the scale of the keypoint and Θ = {\1, \2, \3} the 3 orthonormal

angles necessary to specify an orientation in 3D. The first step in extracting keypoints is

identifying potential keypoint locations, then assigning orientation and finally encoding intensity.

Code is available online 1 and Figure1.3 shows the process.

1.3.1.1 3D SIFT-Rank: Detection of scale-Space Extrema

The first step in keypoint detection is determining the location around which each keypoint

descriptor will be measured. The points of interest are located by identifying local maximums

across scale and space. A Gaussian scale-space is used to subsample the image at different

scales.

1http://www.matthewtoews.com/fba/featExtract1.6.tar.gz

http://www.matthewtoews.com/fba/featExtract1.6.tar.gz
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� (-, f2) = � (-) ∗ � (f2) (1.19)

� (-, f2) = 1
(
√

2cf)3
4
−| |- | |2

2f2 (1.20)

Where ∗ is a convolution operation.

There are 3 samples for every scale doubling, also called an octave. It follows the formula:

f8 = 1.6G28/3 (1.21)

In this case f0 = 1.6. The choice of having 3 subsamples per octave was made in the original

SIFT Lowe (2004) design and performed well against other designs. The Difference-of-Gaussian

saliency operator is used to detect stable keypoint locations in scale space.

� (-, f8) = � (-, f8) − � (-, f8+1) (1.22)

Local maxima are identified by comparing a voxel from a DoG image to its 80 (26 + 2 ∗ 27)

voxel neighbours across the 2 adjacent (in scale) DoG images (see Figure 1.3).

1.3.1.2 3D SIFT-Rank: Assigning Orientation

The orientation and intensity encoding starts by selecting a cubic patch of side 4f centred

around local maxima. This patch is resized to a cube of 11G11G11 pixels.

Pixel gradients are calculated through the biggest sphere fitting in this cube. Those gradients

are used to populate a gradient histogram, that can be visualized as the surface of the sphere

depicted in 1.4 section a). Normalization and smoothing are applied to the histogram to reduce

noise. The bin of the histogram with the highest count is considered the primary orientation

vector \̂1. The secondary orientation is obtained by selecting the highest gradient on the circle



15

Figure 1.4 3D SIFT-Rank encoding taken from
Toews & Wells III (2013)

orthogonal to the primary orientation. And finally the tertiary orientation is the cross product

between the 2 other orientations.

1.3.1.3 3D SIFT-Rank: Intensity Encoding

We reuse the cube mentioned before, as well as the calculated gradients inside. The cube is

divided in octants. The gradients of the octants will be incremented for each pixel’s gradient in

the octant. Each octant contains 8 orientation bins. The process is shown in Figure 1.4 section

b). Using intensity gradient instead of intensity provides the advantage of producing registration

more resistant to small changes in the image Lowe (2004). Finally, the gradient intensities are

ranked from 1 to 64, which provides invariance to monotonic deformations (Toews & Wells III,

2013) and good encoding performance. This is similar to the gradient normalization used

by Lowe (2004) in its use against monotonic deformations, such as change in illumination.
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1.3.1.4 Masking Keypoints

Masking is used to specify the region of interest (ROI) of an image. We will define the operation

mathematically for keypoints using the set operations and Ω� we defined previously.

Let our mask be a set <:

< = {p ∈ Ω� | p ∈ '$�} (1.23)

An example of '$� could be the brain. In which case we would interpret < as the set of all

keypoints part of image space of �, such that they are in the brain.

The masking operation is defined with the function " (�, <) for a mask < and an image as a set

of keypoints � = { 51, 52, ... 5=}, where keypoint 58 = {68, 08} and 68 = {-8, f,Θ}:

" (�, <) = { 58 ∈ � | -8 ∈ <} (1.24)

1.3.2 3D SIFT-Rank keypoint Uses

In the original article by Toews &Wells III (2013), 3D SIFT-Rank were used for model-to-image

alignment, which consists of aligning an image in a particular standard orientation dictated by

a model. 3D SIFT-Rank have also been used by Wachinger, Toews, Langs, Wells & Golland

(2015) for whole body segmentation. In general, salient keypoints provide a compact signature

of an image. That signature can be compared to a large database containing similar signatures via

a nearest neighbour search. The same process can be used with a subset of an image, enabling

object detection. Nearest neighbour searches, contrary to neural networks, work without training.

This is particularly useful when dealing with small number of samples.



17

1.4 Border Interference of Skull-Stripped Image

This section details our reasoning for believing that border noise is generated when extracting

salient keypoints from skull-stripped images. Skull stripped images are sharply divided in

2 sections: brain tissue, with varying greyscale intensities and non-brain tissue, all with an

intensity of 0. Skull-stripping algorithms often get over 90% Dice Coefficient, but the border

tends to be jagged and varies depending on the skull-stripping algorithm used. We believe those

properties interact poorly with the Laplacian Filter used to extract 3D SIFT-Rank keypoints.

Laplacian filters react strongly to sudden changes in intensities, which will always be present on

a skull-stripped image near the mask’s edge. This will cause the algorithm to find keypoints

near the edge of the mask solely because the mask ends there, making the keypoint extraction

very dependant on the exact mask’s borders and the skull-stripping algorithm.

1.5 HCP Family Relationship Classification

A recent study by Chauvin et al. (2020) investigated the neuroimage signature obtained

with salient keypoints and the signatures of observed semblance between family members’

signature. This study used a collection of 4 public databases, including the Human Connectome

Project(HCP), containing a total of 8152 images. The Human Connectome Project (Van Essen,

Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium et al., 2013) contains a number of related

family members appropriately tagged.

The signature of each subject is represented as a set of 3D SIFT-Rank keypoints. The keypoints

are extracted for each subject after skull-stripping the images using the FreeSurfer (Fischl, 2012)

pipeline. This results in a set of keypoints situated in the skull-stripped brain mask or near the

edge of it.

The pairwise relations between all subjects were categorized as one of the 5 following relation-

ships: same subject (SM), monozygotic twins (MZ), dizygotic twins (DZ), full- sibling (FS)

or unrelated subjects (UR). A pairwise comparison is made by measuring the Jaccard overlap

(eq. 1.25) of each of the
(#

2
)
= # (# − 1)/2 image pairs. It is a measure of the proportion of the
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keypoint correspondences shared by an image pair:

� (�, �) = |� ∩ � ||� ∪ � | =
|� ∩ �|

|�| + |� | − |� ∩ � | (1.25)

where |�| is the cardinality of the set A, |�∩� | represents the number of keypoint correspondences

between image pair (�, �) and � ∪ � is the union between set � and �. The correspondences

are not binary, they are a measure of the similarity between a pair of keypoints’ descriptors. Each

class of relationship between pairs has a distinct Jaccard coefficient distribution that enables

us to classify the relationship with a Jaccard coefficient threshold as shown by the figure 1.5

produced in the study.

Figure 1.5 Distributions of the pairwise Jaccard distances conditional on relationship
labels taken from Chauvin et al. (2020).

The SM, MZ, DZ, FS and UR labels all have their distinct distributions (*difference between
FS and DZ twins is statistically insignificant) There’s no overlap between SM distribution
and UR distribution and the study found many labeling inconsistencies in databases using
this property. On the other hand, the MZ, DZ and FS distribution have some overlap. In our
study we will reproduce the original experiment and we expect less overlap of the MZ, DZ

and FS distributions by using more informative keypoints in higher number.
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1.5.1 Technology Used

Most of the experiments conducted during this research are coded in Python. Python is an

open-source, high-level, interpreted language with a wide array of public libraries available.

Here are the libraries that were used in this project:

• Numpy2: widely used open-source library providing support for multi-dimensional matrices

and functions to operate on these matrices.

• NiBabel3: library providing read/write utilities to common medical image formats.

• SciPy ndimage4: library compatible with Numpy matrices and providing support for

multidimensional image processing.

• Flann5: We use it for its randomized KD-tree Muja & Lowe (2014), an approximate nearest

neighbor algorithm that perform particulary well with high-dimension data.

• Numba6: translates Python functions to optimized machine code at runtime. Particularly

useful when needing a function not available in any library that iterates over every voxel of a

3D image. Those functions run slowly on Python since it’s an interpreted language. Numba

circumvent this by compiling functions at runtime, but, from experience, coding functions

compatible with Numba can be hard and should be left as a last resort.

• pandas7: Useful library to accelerate the reading and writing of files containing large amount

of data.

Some additional notes on the Scipy ndimage library: working with 3D images is less common

than working with 2D images, so there tends to be less support for it. The OpenCV library is

widely used in computer vision with Python, but has poor support for 3D images. Scipy ndimage

is the best library we could find supplying n-dimensional functions to work with images.

2https://numpy.org/
3https://nipy.org/nibabel/
4https://docs.scipy.org/doc/scipy/reference/ndimage.html
5https://pypi.org/project/flann/
6http://numba.pydata.org/
7https://pandas.pydata.org/

https://numpy.org/
https://nipy.org/nibabel/
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://pypi.org/project/flann/
http://numba.pydata.org/
https://pandas.pydata.org/
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Some of the code used in our experiments is available online8. This repertory contains many

useful utility tools to manipulate 3D SIFT-Rank keypoints.

8https://github.com/pEtienn/3D-SIFT-keypoints-utilities

https://github.com/pEtienn/3D-SIFT-keypoints-utilities


CHAPTER 2

METHODOLOGY

In this section we compare two methods for representing medical images with keypoints:

extracting keypoints on a masked image and filtering keypoints extracted from the natural image.

We will start by comparing those 2 methods mathematically, so that some of our conclusion

might be valid for any keypoint masking application. Then we will perform experiments on

brain keypoints and compare the results with our mathematical conclusions. While this thesis

focus on keypoints analysis, results should apply to any system involving linear filtering such as

CNNs, when working with masked images.

2.1 HCP Database

Experiments were conducted using a specific brain database, but we expect results will generalize

for other databases as well. The Human Connectome Project (Van Essen et al., 2013) database

was chosen so that we could compare our results to the original experiments in Chauvin et al.

(2020), who also used this database. A subset of 1010 subjects from the HCP Q4 release

containing 439 unique families, including some unrelated subjects (see table 2.1). T1-weighted

MR images have been acquired between 2012-2015 on a 3T MR scanner, at a 0.7mm isotropic

resolution. Through the Freesurfer pipeline, images have been registered to the MNI space, brain

masks have been generated, and images have been resampled to a 1.25mm isotropic resolution,

as well as corrected for image artefacts such as eddy-currents and head-motion. Keypoints are

extracted from individual images. The number of keypoints per method is shown in table 2.2 .

2.2 Intensity masking and keypoint masking

For brain studies, the standard procedure is to remove all non-brain tissue using intensity masking

on the image before doing any analysis. In the case of studies based on keypoints, it makes

certain any keypoint generated thus is based on brain intensity. Our hypothesis is that keypoints

extracted near the border of such image are affected by the sudden change in intensity in the
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Table 2.1 HCP demographic
information

Image number 1010
age 29 ± 13
male 468
female 542
Full Siblings (FS) 607
Dizygotic Twins (DZ) 71
Monozygotic Twins (MZ) 134

Table 2.2 Average number of keypoints extracted and
pairwise correspondence counts

methods # keypoints corres.

0.7 mm
intensity-masked 1468 ± 189 233.8
masked 1662 ± 241 264.8
original 2102 ± 277 335.4

1.25 mm
intensity-masked 180 ± 34 28.9
masked 253 ± 54 40.8
original 334 ± 60 53.8

masked image. If so, is there any alternatives for selecting keypoints such that guaranties can

be made on the provenance of keypoint information? In our experiments we will compare

2 main methods of using keypoints belonging to a specific class 9 : intensity masking and

keypoints masking. Currently the intensity masking method is the one commonly in use when

analyzing neuroimages with keypoints. We introduce the keypoint masking method, which

extracts keypoints from the natural image instead of a modified one. Both methods are shown in

figure 2.1.
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(a) intensity-masked keypoints (b) Masked Keypoints (proposed method)

Figure 2.1 Illustrating a) Intensity-masked keypoint analysis, where intensity masking
prior to filtering may lead to artifacts. b) Keypoint masking, where keypoints are extracted
from natural image data, then filtered according to a mask. Reproduced and adapted from

Pepin et al. (2020).

Intensity-masked keypoints is the term we use to refer to keypoints extracted from an intensity-

masked image. An intensity image (�) masked by a class 9 mask is defined this way:

< 9 = {p ∈ Ω8 | p ∈ object 9} (2.1)

� 9 (p) =


� (p), if p ∈ < 9

0, otherwise
(2.2)

In the case of brain images, a brain mask is used to keep only brain content (i.e skull-stripped),

then 3D SIFT-Rank keypoints are extracted from the image. The extraction process is thus

applied to an image with an artificial, arbitrary border that can lead to the problems discussed in

the section 1.4.

Keypoint masking is the process of removing keypoints from a keypoint image to keep only

keypoints of a specific class. For example, keypoints are extracted from a natural brain image

resulting in the set of keypoints �. Then, keypoint masking is used to keep only keypoints in

image � situated in the brain mask. We define the keypoint masking operation mathematically:
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�9 = " (�, < 9 ) (2.3)

Standard keypoints (or simply "keypoints") are extracted directly from the natural image.

Some notations:

• keypoints: � = { 51, 52, . . . , 5=}

• intensity-class 9-masked keypoints: � (� 9 )

• masked keypoints: �9
• intensity-class 9-masked class-2-masked keypoints: �2 (� 9 )

Another approach for keypoint masking is to keep only keypoints whose centre is a certain

distance inward away from the class 9 mask’s border. We will use a distance of 3f for now,

where 3 ∈ R >= 0. One way of selecting keypoints this way is using the erosion operation to

create smaller masks as a function of f, the scale of keypoints.

<(f) = < 9 	 43f (2.4)

where 43f is a structuring element with radius 3f, a sphere for example. The masked keypoints

thus becomes:

�< (f9 ) = " (� (f9 ), <(f9 )) (2.5)

where � (f9 ) = { 5; ∈ � | f; ≈ f9 } The erroded masks and selected keypoints can be seen in

figure 2.2.

With this approach, a different mask must be used for each range f9 , We will develop this

strategy in a later section. In general, we will use the notation �9−3f to refer to those keypoints.

Using only the centre position is the fastest approach, but some of the resulting keypoints will

contain information from outside the brain mask. Adding a distance to the border could insure

that mainly brain information is used, but it can be a lot longer to process and reduces the number

of keypoints for each patient.
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Figure 2.2 Erroded Masking

2.2.1 Data From Outside the Mask in Masked Keypoints

Using intensity-masked keypoints assures us that data from outside the mask is not contained

in extracted keypoints. But doing so reduces the number of useful keypoints extracted. Our

hypothesis is that intensity-masked keypoints near the border of the mask tend to provide lower

quality information. Some of those keypoints even have their centres outside of the mask. We

want to develop a scale dependent method for masking based on the proportion of brain content

encoded in keypoints. In this section, we analyze the data encoded by keypoints in various

situations to quantify the origin of data encoded.

Keypoints are often depicted as spheres in 3D or as circles in 2D. But the data encoded in those

keypoints is not restricted to those spheres (or circles). The data encoded is generated from

the Difference-of-Gaussian operator, which is calculated with 2 Gaussian filters of variance f2
8

and f2
8+1. Gaussian filters have an infinite range. Hence, data encoded in masked keypoints is

attributed in part to non-masked tissues. We will design an experiment to calculate exactly how

much data originates from non-masked tissue in different scenarios. We will use the variable
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': to refer to the ratio of data encoded in the keypoint originating from the volume of the

keypoint. A higher ': means that the keypoint is more local.

We can get an idea of what to expect by simplifying the problem a bit. Let’s assume that the

region of the keypoint with the highest ': is the centre of the keypoint, since it’s surrounded by

the largest coefficients of the Gaussian kernel. The centre’s ': is equivalent to calculating the

probability of a 3-dimensional normal distribution of drawing a point at random in a sphere of

radius 2f. We can calculate it mathematically.

We will use the Gaussian filter equation 2.6 using a radius A instead of a vector x and in 3

dimensions:

� (x : f2) = 1
(
√

2cf)3
4
− A2

2f2 (2.6)

Equation ?? can be thought of as the probability of a point at a particular distance from the

center of the sphere of being drawn if you stay on a single line. But the quantity of content is a

function of radius and increases proportionally. To account for this we will use equation ?? as

the density of a sphere and calculate the mass of that sphere which is equivalent to calculating

the probability of a 3-dimensional normal distribution of drawing a point at random in a sphere

of a given radius.

For the mass equation we will use:

" (') =
∫ '

0
34=B8CH(A) 3+ (2.7)

In our case, + = 4
3cA

3 and 3+ = 4cA23A. You can picture 3+ as being the surface area of the

sphere multiplied by 3A , resulting in a small volume proportional to the varying surface area of

a sphere of growing radius. Which results in :

" (') = 4c
∫ '

0
34=B8CH(A)A23A (2.8)
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Now we can use this equation to calculate the mass of a sphere with a Gaussian density:

" (') = 4c
∫ '

0

1
(
√

2cf)3
4
− A2

2f2 A23A (2.9)

As expected " (∞) = 1, which is the sum of a Gaussian filter of infinite radius.

With this knowledge, we can adapt the normal distribution model to better suit our needs. Let

the random variable - have an isotropic 3-dimensional normal distribution if it’s cumulative

distribution function is:

� (') = %(- < ') = 4c
∫ '

0

1
(
√

2cf)3
4
− A2

2f2 A23A (2.10)

We can generalize this for isotropic n-dimensional normal distributions:

� (') = %(- < ') =
∫ '

0

1
(
√

2cf)=
4
− A2

2f2 3+ (2.11)

where + is the n-dimensional volume (content) of the hypersphere. In the n-dimensionnal case

%(- < ') is the probability that a random sample lies in the hypersphere with radius '. We

will use the notation - ∼ IN= (f) to represent an isotropic multivariate normal distribution

where = is the number of dimensions. We calculated the isotropic multivariate normal CDF for

- ∼ IN= (f):

%(-= < A) =
W( =2 ,

A2

2f2 )
Γ( =2 )

(2.12)

Where Γ is the Gamma function, a generalization of the factorial function to real numbers.

Details for reaching this equation are given in the annex II as well as some interesting properties

of multivariate isotropic normal distributions.

We can easily calculate the centre’s ': for any possible size of 3D keypoints with equation 2.10,

which can be interpreted as the sum of a Gaussian filter’s coefficients as a function of radius.

Equation 2.13 is an example for a 3D SIFT-Rank keypoint, i.e. a sphere with a 2f radius. Let
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- ∼ IN3(f), then:

%(- < 2f) = 4c
∫ 2f

0

1
(
√

2cf)3
4
− A2

2f2 A23A ≈ 0.738 (2.13)

In other words, if you apply a Gaussian filter with variance f2, centered on a sphere with radius

2f, the sum of all coefficients of the Gaussian kernel in the sphere is 0.738 compared to the

total sum of 1 for a Gaussian filter. %(- < A) |- ∼ IN= (f) for different = and A are shown in

table 2.3 and figure 2.3 for various configurations. The original 2D SIFT implementation of

Lowe uses a radius of f and the 3D SIFT-Rank Toews and Wells a radius of 2f. Other values

are given for comparison.

Table 2.3 %(- < A) if
- ∼ IN= (f)

Radius (r) %(-∗ < A)
n=3 n=2 n=1

f 0.199 0.393 0.682
2f 0.738 0.865 0.954
3f 0.971 0.989 0.997
∞ 1 1 1

∗Isotropic multivariate normal distribu-
tion where - ∈ R≥0 is the distance from
the average

The values in table 2.3 tell us the maximum ': we can expect for a whole keypoint of various

radii. It is interesting to note that ': is lower for 3D keypoints than 2D keypoints at the same

radius. %(- < G) |- ∼ IN= (f) diminishes when X includes more dimensions as it is clearly

shown in figure 2.3. As the number of dimension gets higher, the total amount of content (or

n-dimensional volume) also increases, but %(X < ∞) is still 1. The probability of a point

of being drawn at a fixed distance from the center of the filter diminishes across dimensions

according to 1
(
√

2cf)=
(from 2.6). It is also pertinent to note that content is not distributed in

the same way for hyperspheres of different dimensions. For example, the average euclidean

distance (32) from any point to the centre is smaller for a circle than a sphere. As seen from the
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Figure 2.3 %(- < G) |- ∼ IN= (f)
Probability of a value being drawn from an isotropic multivariate Normal distribution of

being within a radius G away from the mean.

equations 2.14, which represents the sum of the distance from all points to the center divided by

the content (area or volume), i.e. area for a circle and volume for a sphere.

∑
32

2>=C4=C
=


3'
4 =

4c
∫ '

0 A∗A23A
4
3 c∗'3 , for a sphere

2'
3 =

2c
∫ '

0 A∗A3A
c∗'2 , for a circle

(2.14)

In short, a 2D Gaussian filter will encode information originating closer to it’s center than

a 3D filter.

We provide a mathematical definition of ': in the annex 1 for the whole keypoint (equation A

I-1), but we will calculate ': experimentally with an estimation algorithm presented in the next

section.
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2.2.2 ': Estimation Algorithm

Our algorithm simulates an image of infinite size, with a sphere of radius 2f populated by ones,

convoluting with a Gaussian kernel with parameter f and calculating the sum of all voxels in

the sphere. We then divide that sum by the volume of the sphere to obtain ': .

Here we demonstrate mathematically how the aforementioned algorithm results in ': . Let �1 be

an image of size (2, 2, 2) filled with 0s except for a small sphere  of radius 0 filled with 1s, as

shown in figure 2.4, where the grey represents 1s. Let �2 be a copy of �1 except the 0s and 1s are

swapped. Let � (f) ∗ �1(G, H, I) be the Gaussian convolution of �1. Let <B be the sphere mask

defined as:

<B = {[G, H, I] ∈ Ω�1 | (G −
2

2
)2 + (H − 2

2
)2 + (I − 2

2
)2 ≤ 02} (2.15)

where 0 << 2.

�1(p) =


1, if p ∈ <B

0, otherwise
(2.16)

�2(p) =


0, if p ∈ <B

1, otherwise
(2.17)

Which results in
∑
" (�1, <B) =

∑
�1 and

∑
" (�2, <B) = 0.

Then:

61 = � (f) ∗ �1(G, H, I) (2.18)

62 = � (f) ∗ �2(G, H, I) (2.19)

�3 = �1 + �2 (2.20)

therefore, since a convolution is a linear map that has additivity:

63 = � (f) ∗ �3(G, H, I) = 61 + 62 (2.21)
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Figure 2.4 Keypoint mask - where grey is 1s and
white is 0s

Note that
∑
63 =

∑
�3 since the Gaussian convolution does not affect the intensity sum in an

image. Every voxel in 61 contains a value that determines the ratio of this voxel’s intensity that

will contribute to the sum of intensities of the keypoint. We can define the ratio of data encoded

in a keypoint from the keypoint volume as:

': =

∑
" (61, <B)∑

" (61, <B) +
∑
" (62, <B)

(2.22)

Which can be simplified to:

': =

∑
" (61, <B)∑

�1
(2.23)

Since: ∑
" (63, <B) =

∑
" (61, <B) +

∑
" (62, <B) , because of 2.21 (2.24)

and ∑
" (63, <B) =

∑
�1 (2.25)
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since applying a convolution (with symmetric padding) with a Gaussian kernel to an image

of infinite size full of 1s does not modify the image. So to calculate the ratio we only need

" (61, <B) and �1.

': provides good insight, but a more interesting value is the ratio of data encoded in the keypoint

originating from the mask containing the keypoint: '<. Obviously, the value of '< depends

on the location of the keypoint. When the keypoint’s centre is on the mask’s border, '< tends

toward 0.5 when the border tends toward a flat plane relatively to the size of the keypoint. Which

is often the case when considering neuroimages if the brain is a lot bigger than the keypoint.

We hypothesize it is true for most keypoints in a brain mask. Exceptions will occur mainly

near area of the brain with low radius, the cerebellum for example. Results may vary for other

masks, particularly if the mask is smaller than a brain mask. This hypothesis also depends on

the resolution of the image used.

To avoid keypoints with too much non-mask content, we propose to reject keypoints that are too

close to the border. To determine what is too close, we calculate '< using the same procedure

as for ': but using a plane mask <? instead of a sphere masks, as depicted in figure 2.5. The

plane mask represents an object’s mask, with the hypothesis that the mask is a lot bigger than

the keypoint.

'< =

∑
" (61, <?)∑

�1
(2.26)

This gives us the ratio of data encoded in a keypoint originating from a mask. We will calculate

'< for different values of 3f, simulating a keypoint with its centre 3f away from the mask’s

border. This data will be useful in determining which keypoint we want to use from all the

keypoints generated by the masked procedure depending on the percentage of non-mask content.

It could also tell us at what point the noise in intensity-masked keypoints starts to be low enough

as to be inconsequential.

It is also possible to calculate '< for real keypoints. You can use the same procedure we just

described, except the sphere is a real keypoint with radius 2f and instead of a plane we use a

real brain mask.
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Figure 2.5 Plane mask - Grey is 1s
and everything else is 0s Blue is the plane mask.

2.3 Pairwise Keypoints Registration Between Masked and Skull-Stripped Images

This is the first experiment we did to compare intensity-masked keypoints and masked keypoints

on brain images. It was a small-scale experiment designed to decide if it is worth investing

more time in larger experiments comparing intensity-masked keypoints and masked ones. In

this experiment we use 4 subjects from the HCP datasets at 1.25mm resolution, consisting of 2

pairs of monozygotic twins. The subjects’ numbers can be seen in table 2.4. The aim of the

experiment is to measure the usefulness of the different keypoint representations in matching

twins together. Twins have similar brain patterns, so they tend to have a higher number of similar

keypoints than non-twins. This small experiment is to see if intensity-masked keypoints have a

lower number of matching keypoints than masked ones, as we expect. We test the following

keypoints types:

• original keypoints: Keypoints extracted from the original image
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• masked keypoints: Keypoints extracted from the original image and masked to keep only

keypoints located in the brain mask

• intensity-masked keypoints: Keypoints extracted from a skull-stripped image.

Matches will be computed between all keypoint representations mentioned above of all 4 subjects.

This means a total of (4 patients G 3 representations)2 computed set of matches and
(12

2
)
= 66

unique pairs.

The main objective of this experiment is to compare masked keypoints to intensity-masked

keypoints. We know beforehand that we can expect the most matches with the original keypoints

and we expect the masked keypoints to yield more matches then the intensity-masked keypoints.

Table 2.4 Twins data from HCP

pair # member # subject #

pair 1 #1 100307
#2 255639

pair 2 #1 100408
#2 705341

2.3.1 Matching with FeatMatchMultiple.exe

For each of the subjects, 3 different keypoint representations are extracted: intensity-masked

keypoints, masked keypoints and keypoints extracted from the original image. The featMatch-

Multiple.exe tool (available online 1) is used to calculate the number of matches between

keypoint representations. The program uses the appearance and location of keypoints from the 2

compared images to calculate the most likely geometrical transformation between the 2 images

and returns matching keypoints according to transformation fit and appearance similarity. Here’s

an example of the command line used :

> ./featMatchMultiple.exe ./Original.key ./intensity-masked.key

1http://www.matthewtoews.com/fba/featExtract1.3.zip
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One thing to note is that

./FeatMatchMultiple.exe File1 File2

is not equal to

./FeatMatchMultiple.exe File2 File1

Both commands achieve slightly different results which makes the matching algorithm noncom-

mutative. A simplified explanation of the noncommutative property is provided by examining a

simplified algorithm for matching elements between 2 sets:

Algorithm 2.1 ClosestNeighbours

1 Input: Set of vectors � and �

2 Output: Matches between � and �

3 Let � = {a1, a2, ..., a=} and � = {b1, b2, ..., b<} where a8, b 9 ∈ R: | : ∈ N.

4 for a8 ∈ � do

5 for b 9 ∈ � do

6 Calculate 3 (8, 9) = | |a8 − b 9 | |2

7 end for

8 < = 0A6<8= 9 (3 (8, 9))

9 a8’s closest match in � is b<

10 <0C2ℎ4B = {<0C2ℎ4B, {a8, b<}}

11 end for

This algorithm results in a list of closest neighbour |�| long, whatever the length of �. If you

called ClosestNeighbours(B,A) instead you would get a list of match |� | long. Depending on

the contents of both lists the result between both calls can be very similar or different. When
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dealing with 2 lists of keypoints of a similar size the order of the call tends to matter less. Real

algorithms are more complex. They may contain distance thresholds, impose a limit of 1 match

per element and many other variations.

2.3.2 Visualization

This experiment aims at visualizing keypoint matches between intensity-masked keypoints

and original keypoints. Instead of using different subjects as in the previous experiment, we

use a single subject (patient 100206 from HCP) and find matches between the 2 different sets

of keypoints. For this experiment, we don’t use FeatMatchMultiple.exe. Instead, we use the

algorithm detailed in algorithm 2.1 with a slight modification. To be considered a match, the

closest neighbour needs to be closer than a hand-picked distance threshold. The threshold is

chosen arbitrarily so that the highest possible euclidean distance between 2 matched keypoints is

4 voxels. The equation for the distance used is the Euclidean distance as shown in equation 2.27

where a 9 is the appearance vector of keypoint 5 9 .

3 ( 5 9 , 58) = | |a 9 − a8 | | (2.27)

The first step of the process is creating a list of matching keypoints between masked and

intensity-masked keypoints. Matching keypoints will then be shown on a slice of the MRI. It’s

hard to visualize 3D data as a whole, hence the most representative slice is chosen manually.

Keypoints are represented on the 3D model as hollow spheres. They appear on the slice as

circles of varying radii depending on the scale of the keypoint and the distance from the centre

of the keypoint to the plane of the chosen slice.
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2.4 HCP Family Relationship Classification

This is a replication of the study of Chauvin et al. (2020) using masked keypoints instead of

intensity-masked keypoints. The study is replicated trying to follow as much as possible the

original protocol. We use the same tools as originally used for most of the task.

Two sets of data are used (subsection 2.1), the 0.7mm resolution HCP set and the 1.25 mm

subsampled one. The 0.7mm resolution datasets was used in the original study and the 1.25

mm version is used to evaluate the impact of resolution on the differences between masked and

intensity-masked representations.

The first step is calculating pairwise matching votes, which is a function of feature matches. It is

done using the tool made available online2 by the author of the original study. With matching

votes and the features count for each image you can calculate the Jaccard coefficient for each

pair of images. We do it using the same MATLAB script originally used. Finally, we calculate

the AUCs of the ROC curve by varying the Jaccard threshold to classify pairs.

2.5 Feature Scale Test

In an additional investigation, we test the impact of the scale of keypoints on family indexing.

Our hypothesis is that signature matching between family members is dependant on keypoint

scale. This experiment is designed to test this hypothesis.

Masked keypoints of the HCP are used at 0.7 mm resolution. Keypoint files for each subject are

separated into subsets based on scale. Those subsets are designed to include the most populated

scale ranges as well as some combinations of them. The different possible scales can be obtained

with the equation 1.21, the scale equation of SIFT keypoints. But in practice, scale values

vary slightly from this equation because the scale is calculated using the final size of the patch

represented by the keypoint descriptor. This is why we are using scale ranges instead of values.

2https://github.com/3dsift-rank/3DSIFT-Rank

https://github.com/3dsift-rank/3DSIFT-Rank
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Figure 2.6 Scale histogram
Distribution of keypoint scale in a brain image

The scale cutoff demarcations are obtained by using KDE on the histogram shown in figure 2.6

to obtain a single continuous function and detecting minima. With the data separated by scale

ranges, we replicate the family indexing procedure for each scale range and observe if a range

performs notably better then the others.



CHAPTER 3

RESULTS AND INTERPRETATION

In this chapter we present results from the experiments detailed in the previous chapter. We

calculate ': and '< with our model, measure pairwise patient keypoint matches between

different keypoint types, perform the HCP family relationship classification experiments with our

new keypoint representations and provide visualisation of matching keypoints. Each experiment

section includes a small discussion of the results, but results from different experiments will be

compared in the next chapter.

3.1 Data From Non-Brain Tissue in Masked Keypoints

Table 3.1 details the ': and '< values for the most frequent scales, where ': is the ratio of

data encoded in a keypoint originating from the volume of that keypoint and '< the ratio of

data encoded in a keypoint originating from the volume of the mask with a simplified model.

The left column’s f lists the Gaussian scale, which is also half the keypoint’s radius. '< has

been calculated for 2 different plane distances. The distance f leads to the plane going through

part of the keypoint’s sphere and 2f is tangent to the keypoint’s sphere. As a reference, we also

calculate ': for 2D keypoints as per Lowe’s implementation, results are shown in Table 3.2.

Table 3.1 and 3.2 contain the average values for the experiment using a Gaussian filter with

parameter f8 and f8+1 to account for the use of both by the Difference-of-Gaussian operator.

First off, we can compare ': values to Table 2.3. As in our hypothesis, the centre’s ': is higher

than the keypoint’s ': , using 2f radius for 3D and f radius for 2D. We can also observe that

': values vary slightly around the average while '< values tend to go down with higher fs.

It is interesting to note that 3D keypoints’ design compensates for the lower ': inherent to 3D

compared to 2D by having double the radius. As a result, 3D keypoints achieve a slightly higher

': than 2D keypoints.
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Table 3.1 Empirically calculated ': and '< for common
3D keypoint scales

i f8 ':
'<

38BC0=24 = f 38BC0=24 = 2f
4 4.03 0.42 0.82 0.95
5 5.08 0.43 0.81 0.94
6 6.40 0.41 0.80 0.94
7 8.06 0.44 0.80 0.94
8 10.16 0.43 0.79 0.94
9 12.80 0.43 0.77 0.93
average 0.42 ± 0.01 0.80 ± 0.01 0.94 ± 0.00

Table 3.2 Empirically
calculated ': for common 2D

keypoint scales

i f8 ':
4 4.03 0.32
5 5.08 0.33
6 6.40 0.30
7 8.06 0.32
8 10.16 0.32
9 12.80 0.30
average 0.32 ± 0.01

3.1.1 Example from a single brain

We measured the real '< for every keypoint in a single brain (patient 100206 from HCP), using

masked and intensity-masked keypoints, relative to the distance to the border. The code to

perform those measures is available online 1.

Figure 3.1 and 3.2 shows '< vs. distance factor (38BC0=24 C> 1>A34A/f). In the previous

experiment we used values of 1 and 2 for the distance factor 3. At first glance we can see that

both distributions follow a similar pattern. For both distribution '< is markedly higher when 3

is greater than 1. In the case of intensity-masked keypoints there are some keypoints with a

1https://github.com/pEtienn/3D-SIFT-keypoints-utilities

https://github.com/pEtienn/3D-SIFT-keypoints-utilities
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Figure 3.1 Rm vs. distance factor(3) for masked keypoints. Contains only
keypoints close to the brain mask border (to keep the focus on the border region).
The color and size of points represent f. The distance to the border is not calculated
with sub-voxel precision, this results in some rounding artifacts for low distance

values.

negative 3. The few of those with a high '< tend to be situated in concave regions. Statistics

are presented in table 3.3 for an accurate comparison with the '< model results presented in the

previous section.

Minimum '< values are similar to the ones calculated in the previous section (0.8 and 0.94),

except for min '< | 3 >= 1. The previous '< calculation method was based on the hypothesis

that a plane was a good representation of the brain border compared to a keypoint. In most case

it is. But for masked keypoints with 3 < 1 there are a few outliers. They tend to be located

near convex sections of the brain with a small curvature. If the plane model was accurate

|� | | '< > 0.94 would be equal to |� | | 3 > 2, but it is not the case. |� | | '< > 0.94 is higher

by an average of 87.5 keypoints for intensity-masked and masked keypoints.



42

Figure 3.2 Rm vs. distance factor(3) for intensity-masked keypoints

Table 3.3 '< characteristics for single patient

statistics masked intensity-masked
min '< | 3 >= 1 0.567 0.812
min '< | 3 >= 2 0.907 0.907
|� | | 3 > 0 2214 1679
|� | | 3 > 1 1601 1496
|� | | 3 > 2 1327 1324
|� | | '< > 0.80 1662 1530
|� | | '< > 0.94 1415 1411
|� | 2214 1819

min '<: minimum '< value among '<’s off all keypoints 5 ∈ � .
|� | | '< > 0: number of keypoints in image � with '< greater than 0.

This experiment enabled us to verify how accurate our model is. While some differences exists

and some keypoints will have a different '< than the one predicted by the model, the model is

accurate in general. We believe calculating '< for any keypoint as a function of it’s distance to
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the brain border is the most efficient method for filtering keypoints according to '< in the case

of brain studies. Calculating '< for each keypoint is time consuming, taking us a total of 4.5

hours for the 2214 masked keypoints. The technique could still be useful in cases other than

brain study, with organs or objects of irregular shape where the keypoints radius is closer to the

radius of the object’s surface.

3.2 Pairwise Keypoints Registration Between Masked and Intensity-Masked Images

This section investigates the pairwise keypoint registration between different keypoint represen-

tations of 2 sets of twins detailed in section 2.3. A pairwise matching is performed for all of the

12 representations (4 patients x 3 type of keypoint representations), where a robust voting-style

algorithm(Toews & Wells III, 2013) identifies keypoint-to-keypoint correspondences between

each image pair that are inliers of a global similarity transform. Values in Figure 3.3 represent

the number of matches found. Table 3.4 contains averages of number of matches for subsets that

are particularly interesting.

For Figure 3.3, row keypoint representations are the first argument in the "featMatchMultiple.exe"

command and columns are the second argument. The table is symmetric regarding compared

representations. On each side of the top-left to bottom-right diagonal, the same pairs are

computed, but with the parameters’ order reversed in the command. This yields slightly different

results.

Table 3.4 Matching between twins synthesis

Keypoint type 1 ↔ Keypoint type 2 avg. number of matches avg ratio of matches
masked ↔ masked 150.75 0.16

intensity-masked ↔ intensity-masked 78.75 0.26

Table 3.4 contains the most important data from figure 3.3. The left side contains matched

keypoint representations and the right contains the average number of matches and the average

match ratio ( =D<14A_> 5 _<0C2ℎ4B
<0G_=D<14A_> 5 _<0C2ℎ4B ) for matched representations of the twins. With 150.75

average matches there is about twice the number of matches for masked keypoints vs. intensity-
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Figure 3.3 Keypoint matching between twins - Number of matches
The number of keypoints per image are in yellow and matches between different twins of
pair 1 and 2 are in green and blue. Values used for table 3.4 are bold and underlined.

masked keypoints which can lead to better matching. But, the ratio is lower for matching between

masked images. This experiment shows that using masked keypoints results in more matches

found and that using masked keypoints might yield better results in certain applications.

3.3 HCP Family Relationship Classification

We perform experiments to measure the pairwise similarity between 1010 subjects from the

HCP dataset using the Jaccard overlap score introduced by Chauvin et al. (2020), following the

same method. In the original article, intensity-masked keypoints at 0.7mm resolution were used.

We compare the following keypoint representations: original, masked, and intensity-masked at

both 0.7mm and 1.25mm resolutions. The figure 3.4 shows ROC curves for the masked and

intensity-masked representations at 0.7mm. Though the area under the curve (AUC) is similarly

very high for Monozygotic (MZ) cases using masked and intensity-masked points, a higher AUC

is observed in the case of Full-Siblings (FS) and Dizygotic (DZ) using the masked points when

compared to the intensity-masked points. Unlike previous work, the proposed masked method

also leads to statistically significant differences between DZ and FS brain similarity at a 1.25mm



45

resolution. This may be because we have never been able to observe cortical morphology in this

amount of detail, due to skull-stripping noise.

Figure 3.4 ROC curves

Table 3.5 compares relationship classifications using original, masked, and intensity-masked

keypoints at different resolutions. Using masked keypoints results in higher AUC than intensity-

masked keypoints for any relationship at both resolutions. The increase in AUC is amplified at a

lower resolution, because a higher fraction of the intensity-masked keypoints are affected by the

brain mask.

In this experiment, masked representations always perform as well or better then intensity-masked

representations. We think it is due to a combination of a higher number of keypoints and
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Table 3.5 AUC values for different keypoint representations and resolutions. Masked
keypoints are a subset of original keypoints, and thus have lower AUC.

keypoints FS DZ MZ # keypoints

0.7 mm
intensity-masked 0.865 0.909 0.999 1468 ± 189
masked (ours) 0.889 0.926 0.999 1662 ± 241

original 0.931 0.970 0.999 2102 ± 277

1.25 mm
intensity-masked 0.824 0.851 0.991 180 ± 34
masked (ours) 0.858 0.905 0.998 253 ± 54

original 0.889 0.950 0.998 334 ± 60

that none of those keypoints suffer from border noise. We also saw that original keypoints

perform better than masked ones, implying that non-brain tissues are useful in predicting family

relationship. But in case of studies interested solely by the brain, those tissues should not be

included. But, as we saw before, non-brain tissue information is partly included in the masked

keypoints we used. In the case of some keypoints, '< goes as low as 50%. So the usage of

masked keypoints is not without compromise.

3.3.1 Ignoring Keypoints Close to the Mask’s Border: Eroded Brain Mask

In this section we repeat the family relationship classification experiment incorporating our

results about data originating from non-brain tissue. Our experiment calculating '< has shown

that if we do not consider any keypoint with a centre at a distance of f from the mask’s border,

the minimum '< is around 0.8. This goes up to 0.94 when the distance is 2f. In the case of

intensity-masked keypoints, encoding data from outside the brain leads to noisy features that,

we believe, are highly correlated to the skull-stripping process. We think it might affect poorly

the results of many experiments. In the case of masked keypoints, considering data from outside

the brain leads to non-brain information being encoded in the keypoint, which is not always a

negative. For example, we demonstrated better results with the whole head than with only the

brain during the family relationship classification experiment. But, considering non-brain tissue

can be a problem for studies that want to focus solely on the brain.
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To avoid those problems, we propose rejecting features too close to the brain mask’s border

using a brain mask eroded by a spherical element of radius 3f, named <3f. Where 3 is called

the distance factor. Our resulting keypoint image, named �1−3f, contains only keypoints with

centres 3f or more away from the mask’s border. The model can be seen in figure 3.5.

(a) Erroded brain masks (b) Erroded masks model

Figure 3.5 Eroded masks - Left image is an example (modified for visibility) of erroded
masks with distance factor of 2 applied on a brain and keypoints filtered by the different
masks. Right image represents the general model. <1 (blue) represents the brain mask and
<f=1(green) represents a brain mask eroded 2f inward. Circles �, �, and � represent
keypoints with radii 2,2,4 of a scale f equal to 1,1 and 2. Keypoints � and � are on the
border of mask <f=1 and <f=2. Keypoint � is outside of mask <f=1 and is excluded from

�1−2f, contrary to � and �.

Let <1 be the brain mask and 4B (3f) be a spherical element with radius 3f. �1−3f can then be

calculated with the following model:

4B (3, f) = {[G, H, I] ∈ Z | G2 + H2 + I2 ≤ (3f)2} (3.1)

<(3, f) = <1 	 4B (3, f) (3.2)

� (f) = { 5 ∈ � | 5 = {.., f, ...}} (3.3)

�1−3f = { 5f ∈ "
(
� (f), <(3, f)

)
∀f } (3.4)
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Brain masks eroded 3f inward are tested on intensity-masked and masked keypoints at 0.7 and

1.25mm resolution. Table 3.6 contains the result of the experiment, where the distance is the

minimum distance of any keypoint’s centre to the brain mask’s border. Figure 3.6 contains the

data in the colum "AUC change" of the table 3.6 but in graph form. The implementation differs

a bit from the equation above. As we detail in figure 2.6, there are a multitude of possible scale

values for a keypoint. In our implementation, we create an erroded mask <(3, f) for values of

f = 1.6G2 8
3 | 8 = {4, 5, ..., 8}. These are the most populated keypoint scales. For each keypoint,

we use the mask with the closest scale value to the keypoint’s f. Some of the keypoints with

bigger scales don’t have a mask with a close-scale value. This is a compromise we chose to

save computing time, since there are few keypoints with high scale values and performing

erosion with large elements is time consuming. Some results of the previous family relationship

classification experiment are shown in the table for reading ease. Keypoints extracted from

skull-stripped images from the previous experiment don’t have an established minimum distance

from the mask (referred by none), sometimes they are even outside the mask. Masked keypoints

from the previous experiment have a minimum distance of 0.

Table 3.6 AUC values with eroded brain mask - Border intensity-masked keypoints provide no
increase in AUC.

keypoints distance FS DZ MZ AUC change # keypoints

0.75 mm

intensity-masked
none 0.865 0.909 0.999 - 1468±189
f 0.866 0.908 0.999 0% 1248±157
2f 0.861 0.898 0.999 -0.85% 1168±150

masked
0 0.889 0.926 0.999 - 1662 ± 241
f 0.877 0.905 0.999 -1.81% 1897±187
2f 0.863 0.901 0.999 -1.01% 1186±152

1.25 mm

intensity-masked
none 0.824 0.851 0.991 - 180±34
f 0.819 0.867 0.989 0.66% 138±22
2f 0.819 0.860 0.989 -0.42% 121±19

masked
0 0.858 0.905 0.998 - 253±54
f 0.849 0.898 0.997 -0.91% 229±50
2f 0.817 0.851 0.989 -4.52% 121±19

"AUC change" represents the AUC difference between the row above and the current row. It is an average
of the FS and DZ AUC difference value. We decided to ignore MZ data since it’s "capped" most of the time.
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Figure 3.6 Total AUC change in percentage for FS and DZ average

We see in figure 3.6 that results for intensity-masked representations remain stable or even

improve when using eroded masks at a distance of f. At a 1.25 mm resolution, the AUC is

still better when using �1−2f. This implies that keypoints with centers near the border of

intensity-masked images are not useful in the family classification task and can sometimes

be detrimental. This is not the case for masked keypoints, where using eroded masks results in

a loss of classification performance. Using eroded brain masks reduces the number of keypoints

available. In the case of intensity-masked images, the removed keypoints are noisy and don’t

contribute to classification, contrary to masked keypoints.

At a distance of 2f, the results are very similar for masked and intensity-masked keypoints,

including the number of keypoints. This confirms our previous experiment calculating a

minimum '< of 0.94 for keypoints at 2f from the border. Using a brain mask eroded of 2f on

intensity-masked and masked images results in 2 sets of very similar keypoints. So similar in

fact, that both representations offer the same performance in family relationship classification.

We mentioned that intensity-masked keypoints near the border are not useful for classification.

At 0.75 mm resolution, they don’t affect the classification rate while at 1.25 mm they reduce it by

0.66% (see section 3.4.1) The resolution is an important factor, another one is the classification
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task we perform and how we match keypoints together. The feature matching algorithm used in

family classification is designed to react strongly to close feature matches and ignore distant

matches. So, if noisy features are random, it should not impact negatively the family classification.

While noisy features don’t seem to affect negatively this experiment (except for one case), we

can’t be sure it is a generalized behaviour and noisy features might be detrimental to some

experiments.

3.4 Visualization

This section shows the results of the visualization experiment. The aim is to provide a visual

explanation of the relation between intensity-masked keypoints and masked keypoints.

Figure 3.7 shows a saggittal brain MRI slice with original and intensity-masked keypoints.

Matches and non-matches between the keypoints are represented by different coloured circles.

Most matches between the two sets of keypoints are further inwards from the mask edge, and

most unmatched keypoints are closer to the edge of the brain.

Figure 3.7 Visualizing keypoints (circles) in original (left) and skull-stripped (right)
images. Keypoints present in both images are shown as (green, left), unique to original
image as (blue, left) and unique to skull-stripped image (red, right). Keypoint masking

generally identifies additional keypoints located primarily on the cortex in regions affected
by boundary artifacts.



51

Across all images at 0.7mm resolution, 85% of the intensity-masked keypoints matched with the

original keypoints of the same image, while at a 1.25 mm resolution, 75% of the intensity-masked

keypoints matched with the original keypoints. This was measured across the subset of 1010

images we used from the HCP dataset.

3.4.1 Modelling Non-Matching intensity-masked keypoints as a Sphere Surface

At first glance the percentage of matches scales with the volume of the brain mask. If we

model the brain as a sphere and assume the number of intensity-masked keypoints that did not

match are relative to the surface of the sphere, we can use this model to project the number of

intensity-masked keypoints not matching at different resolutions. Using this model, we will

predict that 86% of the intensity-masked keypoints will match at 0.7mm resolution using the

1.25mm data. This is a simple model representing our intuition that the border interference

effect on classifiers is dependent on the size of the mask.

We show that the number of intensity-masked features not matching original features fits our

hypothesized sphere based model. In our experiment 85% of skull-stripped features matched

with original features at 0.7mm, and 75% matched at 1.25mm. We now try to predict the

difference when going from 1.25mm to 0.7mm resolution, the voxel size ratio is 1.78. Equation

set 3.5 represents the area(�) and volume(+) of a sphere as a function of radius(A).

�(A) = 4cA2

+ (A) = 4
3
cA3

(3.5)

Equation set 3.6 represent our model to predict the number of features in 0.7mm resolution from

1.25mm resolution images.
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A0.7<< = 1.78A1.25<<

�0.7 = 3.17�1.25

+0.7 = 5.64+1.25

(3.6)

From the experiment in the previous section, if we take a brain at 1.25mm resolution containing

- skull-stripped features, 0.25- skull-stripped features won’t match on average. We can

consider those as the area around the sphere in our model. With our model we know

that the area of �0.7 = 3.17�1.25. Since we know that �1.25 = 0.25, we can deduce X:

3.17�1.25 = 3.17G0.25- = 0.7925- . We also know that +0.7 = 5.64- . And since 0.7925
5.64 = 0.14,

our model predicts that 14% of skull-stripped features won’t match at 0.7mm resolution,

compared to the real value of 15%. The model seems to fit well, but with only 2 data points, we

can’t be sure of how well it would perform in other situations. Other factors to consider would be

the dataset used as well as the skull-stripping algorithm, since intensity-masked keypoints around

the edge of the brain mask are likely to be strongly influenced by the skull-stripping algorithm.

In conclusion, better resolutions lessen intensity-masked problems, since it’s correlated to the

area divided by the volume of a sphere, which gets lower with a bigger radius.

3.5 Feature Scale Test

The objective of this experiment is to test the following hypothesis: "keypoints’ family relations

information is scale dependent". To test this, we create 5 separate scale groups as seen in

table 3.7 and measure AUC using images as feature containing only features in those scale

ranges.

Note that the different scale groups yield different numbers of keypoints. The number of

keypoints is inversely proportional to the scale value.

We can see in table 3.7 that the AUC doesn’t seem to vary depending on the scale value. The

scale range 4.72-5.96 yields the best AUC, but not by a big margin. It’s also interesting to
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note that even if the number of keypoints is lower at higher scales, the AUC is not affected

proportional to the number of keypoints. Two combined scale groups are also tested and generate

higher AUC then smaller groups, but obtain similar results between them.

Table 3.7 AUC by scale groups

scale groups AUC |group| scale mode theoretical scale values
FS DZ MZ 1.6 ∗ 28/3 i

0-4.72 0.76 0.79 0.97 845 4.1 4 4
4.72-5.96 0.79 0.82 0.99 478 5.2 5.1 5
5.96-7.4 0.75 0.82 0.97 183 6.5 6.4 6
7.4-9 0.74 0.78 0.95 90 8.4 8.1 7
9-∞ 0.77 0.82 0.95 66
0-5.96 0.84 0.88 0.99 1323
7.4-∞ 0.85 0.89 0.99 156
All 0.889 0.926 0.999 1662

We conclude that the scale of the keypoint has no impact on family classification. Family brain

resemblances are not more prominent at a particular scale. We also note that the number of

keypoints between scale ranges does not affect the AUC. This could be due to a higher volume

covered by keypoints in scale groups with higher scale average.





CHAPTER 4

DISCUSSION

4.1 Comparing Intensity-Masked to Masked Representation

The previous sections detailed many experiments comparing intensity-masked and masked

keypoint representations. With those results, we can compare both techniques in order to better

choose which one to use.

With our models, we have seen that intensity-masked keypoints near the border of the mask

encode artificial data. We have been able to calculate what proportion of the keypoint information

is composed of such artificial data theoretically and verify it on an actual brain. The theoretical

method assumes the mask is a lot bigger than the keypoint radius and this hypothesis should

hold for a variety of organs, as it did on the brain tested. The same is true for masked keypoints

encoding data from outside the mask. In both those case, knowing the ratio of data encoded in

the keypoint originating from the mask enables researcher to choose which keypoint is adequate

for their study.

We also compared intensity-masked and masked keypoints in the specific context of a brain

study. As mentioned before, those studies typically incorporate the skull-stripping as part of the

image pre-processing. This ensures that no non-brain tissue is part of the study. Using masked

keypoints results in the presence of some non-brain tissue data. But with the results obtained

in section 3.1, the designer of a pre-processing procedure can choose himself what minimum

'< is suitable. For example, rejecting any keypoint 2f or less away from the brain mask’s

border would insure a minimum '< of around 0.94. At a distance of f, it goes to 0.77. This is a

compromise between the resulting number of keypoint and the minimum '<. In experiments

where using non-brain data is not critical we demonstrated notably better results using masked

keypoints than intensity-masked keypoints, particularly at a lower resolution.
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Intensity-masked keypoints don’t contain any non-brain tissue data. But there are some drawbacks.

Intensity-masked keypoints near the border are strongly influenced by the skull-stripping process

and tend to be noisy. We demonstrated with the eroded mask experiment that those keypoints

don’t provide much useful information in the context of family classification and can lead to

worse classifications in some cases. There’s also less intensity-masked keypoints than masked

ones, particularly at a resolution of 1.25mm. Some of those disadvantages can be worked around.

Most of the border keypoints can be avoided by rejecting any keypoints 1f or less away from

the brain’s border, using eroded masks. The smaller number of keypoints can’t be avoided, but

using a better image resolution will lessen the problem.



CONCLUSION AND RECOMMENDATIONS

5.1 Recommended Keypoint Representation for Brain Studies

The objective of this thesis was to determine the best way to use keypoints with brain images.

We always recommend using masked keypoints. It is fast to compute and always offer better

performance than intensity-masked keypoints. If avoiding non-mask data is important, we

suggest using an eroded mask on original keypoints. The minimum ratio of non-mask data

encoded in a keypoint can be consulted in figure 3.1. If necessary, those ratios can be computed

for every keypoint in a real organ with equation 2.23. Code is also available on our repository to

perform this task 1 .

When using intensity-masked representations, we suggest using an eroded mask with a distance

of f. This should avoid most of the noisy keypoints while not lowering performance.

Those recommendations are particularly effective with images at low resolutions, 1.25mm in our

tests. At better resolutions, the difference between masked and intensity-masked representations

becomes less noticeable.

In our comparison we used the family relationship classification experiment with brain images as

a performance metric. Different experiments might perform differently with each representation,

but this does not affect our analysis of ': ( encoded data from keypoint volume
all encoded data in keypoint ) and of the theoretical

'<. These ratios can be good tools to judge how useful a keypoint is in a new situation, even if

it’s not extracted in a brain.

1https://github.com/pEtienn/3D-SIFT-keypoints-utilities

https://github.com/pEtienn/3D-SIFT-keypoints-utilities
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5.2 Future Works

We investigated artifacts in keypoint as a result of intensity masking. Keypoint technology is

not widely used compared to CNNs. It would be interesting to examine the impact of intensity

masking on CNNs instead, conclusions could potentially be far reaching. Although, finding a

solution equivalent to masked keypoint seems harder for CNNs.

The mathematical properties of the multivariate normal distribution we demonstrated in appendix

II could contribute to a better understanding of the scale-space. While the properties shown

were mostly already known mathematically, sometimes in a different form, some of them are

not common knowledge in the computer vision field. The CDF gives us a better idea of what

information a point contains after Gaussian filtering. The variance of the distance to the center

of the filter gives us a good tool to compare filter’s variance at different dimensions. The

univariate equation of the normal distribution gives a simpler tool to represent a system that can

get complicated in n-dimensions. We made use of the CDF in this thesis and we believe that

other properties we found could find some uses as well.

In closing, we think our work will provide a simple procedure for better using keypoints in

medical image studies. We also provided a mathematical model to contribute to a better

understanding of salient features and the data they encode.



APPENDIX I

' EXPERIMENT

1. Calculating ' 

We provide a mathematical definition of ': for the whole keypoint (A I-1). Let �: be the sum

of all Gaussian filter with their centre in the keypoint sphere (: , then:

� = 4c
∫ 2f

0
4c

∫ ∞

0
� (A6 : f) A2

6 3A6 A
2
: 3A: =

4
3
c(2f)3 (A I-1)

� (A6 : f) = 1
(
√

2cf)3
4
−

A2
6

2f2 (A I-2)

(a) variables (b) intersection

Figure-A I-1 Illustrating equation A I-1
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where � (A� : f) is the Gaussian 3D kernel as a function of distance and the keypoint has a

radius of 2f. Note that �: is equal to the volume of the sphere, since Gaussian filters have a

sum of 1 over infinity.

To obtain the proportion of this sum generated from data inside the keypoint, we calculate the

intersection between the Gaussian sphere shell and the keypoint sphere: B6 ∩ (: . It is drawn in

green in figure I-1 (b), where (: is the keypoint sphere and B6 is a Gaussian sphere shell that is

a function of A6 and A: written as B6 (A6, A: ).
|(:∩(6 (A6,A: ) |
|(6 (A6,A: ) | gives us the ratio of mass inside the

keypoint sphere contributing to a point A: away from the keypoint sphere’s centre and with a

Gaussian weight of � (A6 : f).

�0C0 ∈  = 4c
∫ 2f

0
4c

∫ ∞

0

| ∩ B6 (A6, A: ) |
|B6 (A6, A: ) |

∗ � (A6 : f) A2
6 3A6 A

2
: 3A: (A I-3)

': =
�0C0 ∈  

� 
(A I-4)

The equation of the intersection between 2 spheres is known1, but is complex enough as to make

the computing of the integral impractical. Some simplifications can be made since our case is

narrower then the general case.

1https://mathworld.wolfram.com/Sphere-SphereIntersection.html

https://mathworld.wolfram.com/Sphere-SphereIntersection.html


APPENDIX II

ISOTROPIC MULTIVARIATE NORMAL PROPERTIES

We analyse isotropic multivariate normal distribution by transforming it to a univariate function,

the only variable being the distance to center of the distribution. We base our demonstration on

an hypersphere with a isotropic normal density. We will calculate it’s CDF, PDF and moments

with this model.

1. Cumulative density function

We will start with an isotropic distribution and then generalise to any mutltivariate normal

distribution. The multivariate normal density function is

5 (x : `, Σ) = 1√
|Σ | (2c)=

exp (−1
2
(x − `)TΣ−1(x − `)) (A II-1)

Where ` ∈ R= is the mean, Σ is a square covariance matrix, = is the number of dimensions and

|Σ | is the determinant of the covariance matrix. To get an isotropic normal density, we reduce

the covariance matrix to a diagonal matrix with value f2 on the diagonal. This leads to

xTΣ−1x =
| |x| |2
f2 (A II-2)

and

|Σ | = (f2)=. (A II-3)

Using an average of ` = 0 removes the term and does not restrict us since we want to calculate

our c.d.f. from the center of the hypersphere. We then obtain:

5 (x : `, f) = 1
(
√

2cf)=
4−||G | |

2/2f2
(A II-4)
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In equation A II-4, x is a vector, but since we only use it’s norm we can use the norm as a

parameter of the function without losing generality. This gives us an univariate function instead

of a multivariate one.

5 (A : `, f) = 1
(
√

2cf)=
4−A

2/2f2
(A II-5)

Where | |x| |2 = A2.

Let -= be a random variable following the isotropic normal density function from eq.A II-5.

%(-= < A) is the probability that a sample drawn from -= lies in the hypersphere with radius

A. To calculate this we will construct an hypersphere with a gaussian density and calculate it’s

mass. For n-dimensional normal distributions, many points share the same probability, contrary

to the 1-dimensional normal distribution. We use the hypersphere to count those points.

The mass of an hypersphere can be calculated with this formula:

" (A) =
∫ A

0
34=B8CH(A) 3+ (A II-6)

For the hypersphere density we will use eq.A II-5. Which results in the CDF:

� (A) = %(-= < A) =
∫ A

0

1
(
√

2cf)=
4
− G2

2f2 3+ (A II-7)

where + is the n-dimensional volume (content) of the hypersphere. Let ( be the hyper-surface

area of an hypersphere of unit radius. From the literature1:

( =
2c=/2

Γ( =2 )
(A II-8)

and

+ =

∫ A

0
(=G

=−13G =
(=A

=

=
. (A II-9)

1https://mathworld.wolfram.com/Hypersphere.html

https://mathworld.wolfram.com/Hypersphere.html
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Which we use to calculate 3+ :

+ =
2c=/2A=

=Γ( =2 )

3+ =
+

3A
=

2c=/2A=−1

Γ( =2 )

(A II-10)

We can now combine equation A II-7 and A II-10 to calculate the CDF:

%(-= < A) =
∫ A

0

2c=/2

Γ( =2 )
1

(
√

2cf)=
4−G

2/2f2
G=−1 3G (A II-11)

We move the terms we can out of the integral.

=
2

2=/2Γ( =2 )f=

∫ A

0
4−G

2/2f2
G=−1 3G (A II-12)

We will modify the terms of the integral in order to obtain the lower gamma function W starting

with a variable substitution:

G2

2f2 = H −→


G

f2 3G = 3H

G =

√
2Hf2

(A II-13)

The upper limit of the integral goes from A to A2

2f2 .

=
2f2

2=/2Γ( =2 )f=

∫ A

0
4−G

2/2f2
G=−2 G

f2 3G =
2f2

2=/2Γ( =2 )f=

∫ A2
2f2

0
4−H (

√
H2f2)=−2 3H

(A II-14)

=
2=/2f=

2=/2Γ( =2 )f=

∫ A2
2f2

0
4−HH=/2−1 3H (A II-15)
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By definition of the W function we obtain:

=
1

Γ( =2 )
W(=

2
,
A2

2f2 ) (A II-16)

%(-= < A) =
W( =2 ,

A2

2f2 )
Γ( =2 )

(A II-17)

You can change variable A to Gf, where G is the mahalanobis distance:

%(-= < G) =
W( =2 ,

G2

2 )
Γ(=/2) (A II-18)

Equation A II-18 is the CDF of the Chi-square distribution in a modified form. The Chi-square

is the distribution of the sum of = squared standard normal distribution. -= is similar. It is the

radius of a normally distributed hypersphere. We can write it this way:

-= =

√√
=∑
8=1

-2
8

(A II-19)

, where -8 is the distance along each axis. By squaring it, we get the same distribution as a

Chi-square with the same CDF:

%(- < G) = 5 (G) | - ≥ 0 (A II-20)

%(-2 < G) = 5 (
√
G) (A II-21)

%(-2
= < G) =

W( =2 ,
G
2 )

Γ(=/2) (A II-22)

We can think of the Chi-square CDF as the probability that a randomly chosen point in a normaly

distributed hypersphere is
√
G or less away from the center.
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2. Probability density function and moments

We will now look at other interesting properties of isotropic normal distributions. First, we can

obtain the probability density function from equation A II-11 by deriving it.

5 (G) = 2c=/2

Γ( =2 )
1

(
√

2cf)=
4−G

2/2f2
G=−1 (A II-23)

5 (Hf) = 2
Γ( =2 )2=/2f

4−H
2/2H=−1 (A II-24)

With the PDF we can calculate moments 8 of a random variable -= following the isotropic

mutltivariate normal distribution.

� [- 8=] =
∫ ∞

0
G8

2
2=/2Γ( =2 )f=

4−G
2/2f2

G=−1 3G (A II-25)

=
2

2=/2Γ( =2 )f=

∫ ∞

0
4−G

2/2f2
G=+8−1 3G (A II-26)

We will modify the terms of the integral to obtain the Gamma function Γ starting with a variable

substitution:

G2

2f2 = H −→


G

f2 3G = 3H

G =

√
2Hf2

(A II-27)

=
2

2=/2Γ( =2 )f=

∫ ∞

0
4−G

2/2f2
G=+8−2f2 G

f2 3G =
2

2=/2Γ( =2 )f=

∫ ∞

0
4−H (

√
H2f2)=+8−2 f23H

(A II-28)

=
2(=+8)/2f=+8

2=/2Γ( =2 )f=

∫ ∞

0
4−HH (=+8)/2−1 3H (A II-29)
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By definition of the Γ function we obtain:

� [- 8=] = 28/2f8
Γ( =+82 )
Γ( =2 )

(A II-30)

Below are values of the Γ function related to our case:

Γ(1
2
) =
√
c (A II-31)

Γ(= + 1
2
) = 1 · 3 · 5 · · · (2= − 1)

2=
√
c (A II-32)

The first 2 moments are:

� [-1
= ] =
√

2f
Γ( =2 +

1
2 )

Γ( =2 )
(A II-33)

� [-2
= ] = =f2 (A II-34)

We can see that the variance for -1 is f2, as is well known. This is not the case for distributions

of higher dimensions. This is because we are looking at the variance of the distance to the center,

while the parameter f2 of the normal multivariate isotropic distribution represents the variance

along any axis.

in 2D for example, the variance on the G axis is f2 and so is the variance on the H axis. But

the variance of the distance to the center of the distribution is 2f2. In the case of an isotropic

distribution the variance of the distance to the center seems more appropriate than the variance

along an axis as a metric to analyse dispersion. It also enables comparison between distribution

of different dimensions.

Table II-1 contains some values for � [-1
= ]:
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Table-A II-1 Expected
values for different

dimensions

= � [-1
= ]

1 0.7979f
2 1.2533f
3 1.5957f





APPENDIX III

SKULL-STRIPPING AS KEYPOINTS

This section contains our work on skull-stripping brain image as keypoints. It was performed

before the work presented in this thesis and was put on hold for lack of promising results. The

technique is based on the KDE, which is presented below.

1. Kernel Density Estimation

The KDE is a method to estimate the probability density function of a random variable. We will

use it in our segmentation algorithm. In figure III-1 you can see a visualization of the KDE for a

1D random variable x.

The KDE is similar to the histogram of a sample but generates a continuous function instead of

a discrete one. To estimate the PDF at any point it uses near samples and gives a higher weight

to closer ones. The kernel is used to specify the weight given to each sample. Different kernels

can be used, for instance figure III-1 shows a Gaussian kernel. Other kernels are commonly

used: Epanechnikov, triangular, uniform and others. Here is the equation defining the KDE:

5̂ (G) = 1
=

=∑
8=1

 ℎ (G − G8) (A III-1)

where 5̂ is an estimator of the true PDF, = is the number of samples and  ℎ is a kernel function

with a bandwith parameter, which is f in the case of a Gaussian kernel. The KDE will be used

later on to estimate the class of a keypoint.

2. Method

This section details the design of a keypoint segmentation algorithm to separate brain keypoints

from non-brain keypoints. This method aims to be used with MRIs taken in less than ideal

conditions. It uses salient keypoints to mitigate scale and rotation and noise variances. The



70

Figure-A III-1 KDE visualization - Gaussian Kernel
(Drleft, 2010)

The blue line represents the estimated PDF, the red lines
represent the kernels (Gaussian) generated by the short
vertical lines representing samples of the random variable

whole process pipeline uses only SIFT 3D keypoints, which could facilitate the sharing of data

between institutions for large-scale studies.
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2.1 Database: OASIS-1

The OASIS-1 (Marcus, Wang, Parker, Csernansky, Morris & Buckner, 2007) dataset was used

for segmentation experiments. It includes 416 subjects aged 18 to 96. T1-weighted MRI scans

are acquired in a single session at a 1mm isotropic resolution. 100 subjects have been clinically

diagnosed with Alzheimer’s disease. All subjects are right-handed and the dataset contains men

and women.

Table-A III-1 OASIS-1
demographic information

Image number 416
age 52 ± 25
male 160
female 256

FreeSurfer, a popular program performing skull-stripping, sometimes has trouble with images

straying too far from the most common brain patterns. In Chauvin et al. (2020), 616 out of 8152

failed the pre-processing pipeline with FreeSurfer. Our skull-stripping algorithm could be useful

in those cases.

The algorithm starts by classifying every keypoint 5 from an image � = { 51, 52, ..., 5=} using

KDE. It compares the keypoint 5 to a training set containing keypoints labelled as either brain

or not brain with no patient tag, essentially 2 sets of features: brain and not brain. After this

step, we perform spatial regularization to help classify keypoints with no close matches.

2.2 Training Set Generation

Keypoints extracted from the OASIS dataset are used in this experiment. The data is filtered

with computer-generated brain masks and divided in 2 groups: brain and not brain. An example

can be see in figure b for a single patient.
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(a) brain keypoints (b) non-brain keypoints

Figure-A III-2 Training set example from one patient. Note how the keypoints are
distributed: most of the non-brain keypoints are situated below the brain near the eyes and

jaw, with only some keypoints on the skull.

2.2.1 Kernel Density Estimation

Kernel Density Estimation is often used with salient keypoints. The appearance of 3D SIFT-Rank

keypoints exists on a high-dimensional space, which makes it hard to know the true density.

KDE is a useful tool to approximate a probability distribution in this context. Often the algorithm

is used to predict a class for the whole image. In this article, we calculate a class probability for

each keypoint separately by considering the similarity of appearance between each keypoint of

the test image and all keypoints in our training set.

For now the position information of keypoints is ignored to simplify the method. By ignoring

the spatial information, we avoid errors linked with registration. Typically keypoint matches are

validated by comparing the descriptor distance between the closest neighbour and the second

closest (image-to-image match) as described in Lowe (2004). In our case, bad matches get

assigned a very low probability due their high Euclidean distance to the tested keypoint.

The first step of our brain extraction technique is to use KDE to give a probability for each

keypoint on whether it belongs to the brain or non-brain. The objective is to estimate ?(2: | 58)

where 2: is the class (brain or non-brain) and 58 is a keypoint from test images � = { 51, 52, ... 5=}
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using our training set, which is a collection of keypoints  = {f1, f2, ..., f;} from < training

images.

Using Bayes formula:

?(2: | 58) =
?( 58 |2: )?(2: )

?( 58)
(A III-2)

?( 58 |2: ) =
∑
9

?( 58f 9 |2: ) ∝
∑
9

?(08a 9 |2: ) (A III-3)

?(08a 9 |2: ) =
?(08a 92: )
?(2: )

=
?(08 |a 92: )?(a 92: )

?(2: )
(A III-4)

?(2: | 58) =
∑
9

?(08 |a 92: )?(a 92: )
?(2: )

∗ ?(2: )
?( 58)

(A III-5)

?(2: | 58) ∝
∑
9

?(08 |a 92: ) (A III-6)

where ?(08 |a 92: ) ∝ 4
−(a 9−08 )2

2f2 |f = 38 + 1. Where 38 is the distance of the closest neighbour to 58
+ 1.

We speed up the process by only using < keypoints from  . Since there’s a maximum of one

good match 58 per image from the training set, there’s no more than < informative matches to

consider. Some of those < aren’t be good matches, but since the distance is high, the resulting

impact on the probability is low. We use the KD tree algorithm (Muja & Lowe, 2014) to find the

< closest matches.
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The algorithm goes as follow:

Algorithm-A III-1 Kernel Density Estimation

1 Input: Training set, keypoints to classify �

2 Output: class probability of each keypoint 2:
3 Initialise 2 k-d tree ): , each containing all keypoints from the training set of their

respective class

4 for 2: ∈ � | � = {1A08=, =>C1A08=} do

5 for 58 ∈ � do

6 Find the m closest neighbours in ):

7 Use equation A III-6 to calculate ?(2: | 58) with 9 = <

8 %( 9 , :) = ?(2: | 58)

9 end for

10 end for

11 To obtain the most probable class:

12 for 58 ∈ � do

13 ; = 0A6<0G: (%( 9 , :)) The most probable class is 2;
14 end for

The figure III-3 is a visualization of the application of the KDE on the same brain that was

presented in figure III-2. We can see that some of the skull keypoints are correctly labelled, but

also that some brain keypoints have been incorrectly predicted, even if some of them are near

the centre of the brain.
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(a) predicted brain keypoints (b) predicted non-brain keypoints

Figure-A III-3 Result of KDE for a single brain

2.2.2 Spatial Regularization of Segmentation Labels

This step aims at correcting some of the problems caused by the previous method. The general

idea is that most keypoints were correctly predicted, and we can use those predictions to correct

the wrong ones. Previous predictions will affect their neighbour based on the probability
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estimated earlier following a Gaussian curve. The space regularization algorithm is presented in

detail in III-2.

Algorithm-A III-2 Space regularization

1 Input: 2: and - for each keypoint

2 Output: probability mapM

3 Initialize a probability MapM

4 M(2: , p) = 0 ∀ p ∈ Ω� and 2: ∈ �

5 M : N4 −→ R1

6 for 2: ∈ � do

7 for 58 ∈ � do

8 Create a cubic matrix � :

9 � (p) = 8 | p ∈ Ω� , 8 ∈ R, where

Ω� = {p = [G, H, I] ∈ Z3 | − f8 ≤ G, H, I ≤ f8}, where f8 is the scale of 58

10 � (p) =


%( 9 , :), If p = [0, 0, 0]

0, otherwise

11 �� = � (f8) ∗ � (G, H, I)

12 M(2: ) =M(2: ) + � ?03343

13 � ?03343 (q) =


�� (p), ∀ q = p + -8 | p ∈ Ω� and p ∈ Ω�

0, otherwise

14 end for

15 end for

16 To obtain the most probable class:

17 for 58 ∈ � do

18 ; = 0A6<0G: (" (2: , -8)) 2; is the most probable class of 58
19 end for
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(a) predicted brain keypoints (b) predicted non-brain keypoints

Figure-A III-4 Result of space normalization

The figure III-4 is a good example of the problems and advantages of this algorithm. The

keypoints that were wrongfully classified as non-brain while in the middle of the brain are now

classified as brain. Since all their neighbours were predicted as brain, the space regularization

algorithm tends to classify them as brain. This also leads to some misclassifying. The keypoints

on the skull that were previously predicted as non-brain are now predicted as brain. Since

the keypoints on the skull are very sparse, we expect the space regularization technique to

misclassify non-brain keypoints on the skull most of the time. But, in our dataset, most non-brain

keypoints are situated below the brain, very few are on the skull.

One possible avenue of space normalization is the creation of brain masks. During the space

normalization process, we create a probability map for each class. This could lead to the creation

of a rough brain mask. The skull keypoints help to frame the brain mask, but are too sparse to

frame it perfectly. Some other technique is needed to get a complete mask. We could potentially

use the brain mask from the training set, but this would require to perform registration between

the test images and training images.
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3. Results

We test our segmentation algorithm on our training set by using the K-fold method with : = 4.

This means our training set has 312 patients in it during our tests. We measure the DC for both

brain and non-brain tissues. Results are presented in table III-2. The algorithm is tested first

using only KDE, then using KDE and spatial regularization. Dice coefficient is calculated for

brain tissue and non-brain tissue.

Table-A III-2 Dice similarity coefficient results on the test set

brain DC non-brain DC
KDE 0.955 0.594
KDE and regulariza-
tion

0.960 0.615

Those results are comparable to existing techniques, but some key differences exist. First off,

comparing the results of this technique with existing literature is ambiguous since we compare

keypoint DC and voxel DC. They have a great degree of similarity, but should not be compared

as the same metric. In this comparison article by Iglesias et al. (2011) of brain extraction

techniques, the most popular techniques were tested on the OASIS dataset. The highest DC was

obtained with a combination of FreeSurfer and GCUT-40 getting a DC of 94.1%. Another point

to mention is that the technique is very dependent on the training set. Our tests were conducted

on OASIS images using a OASIS training set. Worse results are expected when classifying

images from a dataset not contained in the training set. This can be due to different scanning

equipment, imaging protocol, patient demography, etc.

The technique is also quite fast at around 5 seconds per patient, compared to a 1-minute time for

most techniques (Iglesias et al., 2011).

4. Use of KDE Segmentation

The KDE segmentation proved to perform well in certain restricted conditions. It delivers fast

and accurate brain keypoint segmentation, based on a simple probability model. It can skull-strip
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brains as keypoints which, to our knowledge, is the first technique to achieve this. But it has

some restrictions. KDE segmentation works only with keypoints, does not generate a volumetric

mask and offers limited performance when classifying images from a dataset not present in the

training set.

Future works on KDE segmentation should include testing segmentation on rotated images. It is

a task in which this algorithm could shine compared to others. It could also be interesting to

quantify the performance of the algorithm on images from datasets not included in the training

set. We noted lower performance when testing it briefly, but did not investigate it in detail.

Lastly, we think the space regularization can be improved. Right now, the space regularization

performs really well in the centre of the brain, but fails near its edge.

Our segmentation algorithm, while having many drawbacks, could be useful in certain niche

applications, particularly the sharing of brains between institutions as sets of keypoints.
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