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In this document I prove (theorem 1) that as the number of dimensions increases, the distance between
the nearest and farthest neighbor of an isotropic distribution tends toward a constant that is dependent on
the number of samples in the distribution and not the number of dimensions. This theorem is based on the
fact that iid distributions have a distance distribution that tends towards a normal distribution (2).

Theorem 1. Let Yd = [Y1, . . . , Yd] be an iid random vector. Then, if X = ||Yd|| and d → ∞, then

E[X(n:n) −X(1:n)] = c (1)

, where c is a constant independent of d for a given Yi and n.

Proof. From theorem 2, limd→∞ X
dist−−→ N(

√
µd, σ2

4µ ). Let A ∼ N(
√
µd, σ2

4µ ) and B ∼ N(0, σ2

4µ ). Then
A = B +

√
µd and A(i:n) = B(i:n) +

√
µd. Now we calculate the expectation of the difference between

farthest and closest neighbor

E[A(n:n) −A(1:n)] = E[(B(n:n) +
√
µd)− (B(1:n) −

√
µd)]

= E[B(n:n) −B(1:n)]

The quantity E[B(n:n) − B(1:n)] is the expectation of the range (David and Nagaraja 2003, p. 1) and can be
calculated numerically easily for any distribution and n value. Since it is independent of d, when X can
be approximated by a normal distribution then the expectation of the range of the approximation is only
dependent on σ2, µ and n and not the number of dimensions.

Because the distance distribution converges in distribution to a normal distribution with a variance that
is independent of the dimension, the difference between the farthest and closest neighbor also converges,
even if the mean of the distribution increases.

This brings context to Beyer et al. 1999 where they looked at the ratio of distances between the closest
and farthest neighbor. If

√
µd+B(1) represent the closest neighbor, then the ratio of distances when d tends

toward infinity can be written in terms of order statistics:

lim
d→∞

E[
√
µd+B(1)]

E[
√
µd+B(n)]

= 1 (2)

since
lim
d→∞

√
µd = ∞ and E[B(1)],E[B(n)] ∈ R

This confirms the findings of Beyer et al. 1999 for the normal distribution, but also adds context. They
mentioned that ”as dimensionality increases, the distance to the nearest neighbor approaches the distance
to the farthest neighbor”. The ratio of distances tends toward 1, but the expected distance between closest
and farthest neighbor can stay the same, as is the case for any multivariate distribution with iid distributions
along all axes. This also confirms findings in Aggarwal, Hinneburg, and Keim 2001 where they found that
the distance between farthest and nearest neighbor tends toward a constant for the Euclidean norm.
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With the order statistics model we can also predict the expected range between the farthest and clos-
est neighbor for iid d-dimensional variables, as long as the mean and variance along any axis are known.
Figure 1 shows the expected distance between the closest and farthest neighbor using the normal approxi-

mation N(
√
dµY 2 ,

σ2
Y 2

4µY 2
). The distance increases with the number of samples and is stable in higher dimen-

sions.

Figure 1: Expected distance between the closest and farthest neighbor in high dimensions using the normal

approximation with σ =

√
σ2
Y 2

4µY 2

The following theorem approximates Euclidean distance distributions as a normal distribution as the
number of dimensions tends toward infinity. Angiulli 2018 provided the distribution for the squared Eu-
clidean distance, here we derive the Euclidean distance.

Theorem 2. Let Yd be any multivariate random distribution such that Yd = [Y1, Y2, . . . , Yd], yi ∈ R, E[Y] = 0

and all Yi are iid. Then the distance distribution Xd = ||Yd|| converges in distribution to a normal distribution such
that

lim
d→∞

Xd
dist−−→ N(

√
dµY 2 ,

σ2
Y 2

4µY 2
) (3)

where µY 2 is the expectation of Y 2
i and σ2

Y 2 is the variance of Y 2
i .

Proof. We start by proving it for X2
d and then for Xd. X2

d tends in distribution toward a normal distribution
following the central limit theorem (CLT) such that when d tends toward infinity:

√
d
(∑

Y 2
i

d − µY 2

)
σY 2

dist−−→ N (0, 1)

d∑
i=1

Y 2
i − µY 2d

dist−−→ N (0, dσ2
Y 2)

d∑
i=1

Y 2
i

dist−−→ N (dµY 2 , dσ2
Y 2)
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For example, when Yi ∼ N (0, 1), X2
d is a chi-squared distribution with Y 2

i having µY 2 = 1 and σ2
Y 2 = 2,

which makes X2
d ∼ N (d, 2d) when d is large.

The proof for the square of the distance makes use of the delta method, which states that if there is a
sequence of random variables Xd satisfying

√
d[Xd − θ]

dist−−→ N (0, β2)

, then √
d[g(Xd)− g(θ)]

dist−−→ N (0, β2[g′(θ)]2)

for any function g satisfying the property that g′(θ) exists and is non-zero valued. Continuing from the
CLT demonstration:

√
d
(∑

Y 2
i√
d

− µY 2

√
d
)

dist−−→ N (0, σ2
Y 2d)

let g(x) =
√
x, θ = µY 2

√
d and β2 = σ2

Y 2d with [g′(θ)]2 = 1
4µY 2

√
d

, then:

√
d

(√∑
Y 2
i

d1/4 −√
µY 2d

1/4

)
dist−−→ N (0,

σ2
Y 2

√
d

4µY 2
)√√√√ d∑

i=1

Y 2
i −

√
µY 2d

dist−−→ N (0,
σ2
Y 2

√
d

4µY 2
) 1
d1/4√√√√ d∑

i=1

Y 2
i

dist−−→ N (
√
dµY 2 ,

σ2
Y 2

4µY 2
)

Which proves the theorem.
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